Автор Тема: Космос  (Прочитано 148047 раз)

0 Пользователей и 10 Гостей просматривают эту тему.

batkov

  • Супермодератор
  • Аксакал
  • *****
  • Спасибо
  • -> Вы поблагодарили: 28708
  • -> Вас поблагодарили: 46023
  • Сообщений: 15747
  • Респект: +4026/-0
Космос
« Ответ #1080 : 28 Сентябрь 2020, 13:38:42 »
В ближайшие дни ожидается умеренная геомагнитная буря
 14:04 27/09/2020
 


Национальное управление океанических и атмосферных исследований США прогнозирует, что 29 сентября Земля окажется под воздействием высокоскоростного солнечного ветра, истекающего из очередного «отростка» (выступа) северной полярной корональной дыры. Можно ожидать умеренную геомагнитную бурю G2 (Kp=6). Полярное сияние возможно на широтах вплоть до 50° с. ш. (это условная граница; вблизи нее, полярное сияние может быть видно сразу над северным горизонтом при условии идеально темного неба).

Также, в течение 27 и 28 сентября все еще возможны периоды малой геомагнитной бури G1 (Kp=5), связанной с прибытием высокоскоростного солнечного ветра из предыдущего «отростка» северной полярной корональной дыры.

batkov

  • Супермодератор
  • Аксакал
  • *****
  • Спасибо
  • -> Вы поблагодарили: 28708
  • -> Вас поблагодарили: 46023
  • Сообщений: 15747
  • Респект: +4026/-0
Космос
« Ответ #1081 : 29 Сентябрь 2020, 14:02:57 »
«Молодость» Солнечной системы оказалась «бурной»
 18:00 28/09/2020
 


 Грандиозное событие на заре жизни Солнечной системы, с которым связывают важную эволюционную веху в истории Земли, вероятно произошло на несколько сотен миллионов лет раньше, чем было принято считать.

Пока инвертировать физические объекты и направлять их в прошлое без парадоксов получается только на киноэкране, ученые вынуждены узнавать о давних событиях по скудным сохранившимся артефактам. Что было через сотни миллионов лет после появления Солнца и образования из газа, пыли и льда 8 планет около 4,5 миллиардов лет назад? Считается, что внутри «новорожденной» Солнечной системы произошла серьезная «драка». Планеты, в том числе Земля со своим спутником Луной, подвергались частым и мощным обстрелам астероидов и других космических объектов. Насколько молода была Солнечная система, когда начала «бушевать»?

Изучение образцов лунной породы, добытых в 1970-х годах, показало, что столкновения происходили примерно 3,9 миллиарда лет назад или через 600−700 миллионов после образования Земли. Не все ученые были согласны с этой гипотезой, и теперь группа исследователей из Университета Хиросимы и Университета Токио в Японии нашла способ доказать, что крупная ссора астероидов и планет произошла гораздо раньше.

Спойлер   :
В работе, опубликованной в журнале Earth and Planetary Science Letters, авторы изучили большое число камней, оставшихся от древнего астероида Juvinas и найденных на Земле. «Только обширная база данных могла подтвердить нашу догадку», — сказал Мидзухо Койке, автор исследования и доцент Высшей школы передовых наук и инженерии Хиросимского университета.

Исследование образцов Juvinas показало, что обстрел астероидами произошел на 300−500 миллионов лет раньше, чем предполагали другие ученые, то есть в период от 4,4 до 4,15 миллиардов лет назад. Доказательств «драки», которая могла произойти 3,9 миллиарда лет назад или позже, анализ не дал. Большое астероидное «нашествие» считается ключевым этапом ранней стадии эволюции Земли. Поэтому крайне важно понимать, когда именно оно случилось.

batkov

  • Супермодератор
  • Аксакал
  • *****
  • Спасибо
  • -> Вы поблагодарили: 28708
  • -> Вас поблагодарили: 46023
  • Сообщений: 15747
  • Респект: +4026/-0
Космос
« Ответ #1082 : 01 Октябрь 2020, 17:08:46 »
Астрономы нашли паутину из шести галактик вокруг квазара в ранней Вселенной
 15:02 01/10/2020
 


Астрономы впервые смогли найти компактную группу из шести галактик, окружающих квазар со сверхмассивной черной дырой. Эта система существовала во времена, когда возраст Вселенной составлял всего 900 миллионов лет, ее изучение поможет разобраться в проблеме образования и роста сверхмассивных черных дыр в ранней Вселенной. Статья опубликована в журнале Astronomy&Astrophysics Letters.

Спойлер   :
Факт существования сверхмассивных черных дыр с массами 108−1010 масс Солнца, находящихся в центрах квазаров при значениях красного смещения z>6, представляет собой серьезную проблему для внегалактической астрономии. Общепринятой теории образования подобных объектов нет, считается, что они могли сформироваться и набрать массу в массивных (более 1012 масс Солнца) гало темной материи в ранней Вселенной. При этом, высокие темпы аккреции, обеспечивающие быстрый рост черной дыры, могут поддерживаться как за счет частых слияний протогалактик, так и за счет потоков холодного газа, из которого они формируются. Предполагается, что такие крупномасштабные структуры, ядра которых, в конечном итоге, превратятся в массивные скопления галактик, существовали в ранней Вселенной, и могут выглядеть как области, окружающие квазар, с избыточной плотностью галактик, находящихся на расстоянии до десяти мегапарсек от него.

Группа астрономов во главе с Марко Миньоли (Marco Mignoli) из Национального института астрофизики Италии сообщает о первом наблюдательном подтверждении наличия крупномасштабной структуры вокруг квазара SDSS J1030+0524, для которого значение красного смещения z = 6,308. Квазар содержит активную черную дыру с массой 1,4 миллиарда масс Солнца, более ранние наблюдения за ним при помощи наземных и космических телескопов показали, что этот объект может считаться интересным кандидатом для поисков вокруг него других галактик. В рамках новой наблюдательной кампании, в которой были задействованы спектрографы, установленные на телескопах Кека, VLT (Very Large Telescope) и LBT (Large Binocular Telescope), астрономы провели спектроскопическое исследование SDSS J1030+0524 и ряда других кандидатов в крупномасштабные структуры.

В итоге ученые подтвердили наличие крупномасштабной структуры вокруг квазара SDSS J1030+0524, которая состоит по крайней мере из шести объектов: четырех LBG-галактик  и двух LAE-галактик, а также газовых нитей. Сами галактики удалены от квазара не более чем на пять мегапарсек каждая. Это первый спектроскопически подтвержденный случай обнаружения сверхплотного группы галактик вокруг сверхмассивной черной дыры, существовавшей в первый миллиард лет жизни Вселенной. Открытие подтверждает идею о том, что самые далекие и массивные черные дыры образуются и растут в массивных гало темной материи в крупномасштабных структурах, ожидается, что создаваемый сейчас в Чили телескоп ELT сможет продолжить и расширить эти исследования.


batkov

  • Супермодератор
  • Аксакал
  • *****
  • Спасибо
  • -> Вы поблагодарили: 28708
  • -> Вас поблагодарили: 46023
  • Сообщений: 15747
  • Респект: +4026/-0
Космос
« Ответ #1083 : 09 Октябрь 2020, 18:28:52 »
Содержание марганца в звездах Галактики раскрывает природу сверхновых типа Ia
 6:11 09/10/2020
 


Команда исследователей использовала компьютерное моделирование, чтобы на основе данных по содержанию химических элементов, в частности, марганца, в веществе звезд нашей Галактики, сделать выводы о механизме взрывов сверхновых типа Ia, играющих роль «стандартных свечей» при определении космических расстояний.

Спойлер   :
Сверхновые типа Ia, в отличие от сверхновых других типов, не связаны с гибелью массивной звезды. Механизм звездного взрыва этого типа окончательно не установлен, однако наиболее вероятными считаются две версии, предполагающие взаимодействие между компонентами двойной системы, имеющими относительно небольшую массу. Согласно первому сценарию, в системе, состоящей из белого карлика и нормальной звезды-компаньона, происходит постепенное перетягивание массы со звезды-компаньона на белый карлик, в результате чего белый карлик достигает критической массы и взрывается. В альтернативной гипотезе взрыв происходит в результате слияния между двумя белыми карликами.

В своей работе исследователи во главе с Чиаки Кобаяши (Chiaki Kobayashi) из Института физики и математики Вселенной им. Кавли, Япония, обратили внимание на изменение производства тяжелых элементов, в частности, марганца, в результате взрыва сверхновой типа Ia в зависимости от механизма взрыва: при взрыве по сценарию с белым карликом и нормальной звездой формировалось относительно много марганца, а при взрыве в системе из двух объединяющихся белых карликов – существенно меньше. Затем команда смоделировала взрывы сверхновых типа Ia в нашей галактике Млечный путь и сравнила полученные средние расчетные концентрации марганца с наблюдательными данными, собранными для близлежащих звезд при помощи спектроскопии высокого разрешения. Сравнение показало, что не менее 75 процентов от числа всех сверхновых типа Ia нашей Галактики формировались из двойных систем, включающих белый карлик и нормальную звезду-компаньона. Интересно отметить, что в случае других галактик, например, карликовых сфероидальных галактик, окружающих Млечный путь, соотношение между вкладами этих двух различных механизмов формирования звездных вспышек было обратным – в них преобладал вклад механизма, включающего слияние между двумя белыми карликами.

batkov

  • Супермодератор
  • Аксакал
  • *****
  • Спасибо
  • -> Вы поблагодарили: 28708
  • -> Вас поблагодарили: 46023
  • Сообщений: 15747
  • Респект: +4026/-0
Космос
« Ответ #1084 : 10 Октябрь 2020, 08:19:29 »
Ученые впервые сверили всемирные атомные часы по звездам
 17:41 09/10/2020
 


Астрономы и эксперты по точному времени, объединив свои усилия, создали новую систему более точной сверки атомных часов по всему миру по радиосигналам, исходящим от далеких звезд. Результаты исследования опубликованы в журнале Nature Physics.

Спойлер   :
Атомные часы — прибор для измерения времени, в котором в качестве эталона используют колебания, происходящие на уровне атомов или молекул. Международная система единиц СИ определяет одну секунду как 9 192 631 770 периодов электромагнитного излучения, возникающего при переходе между двумя уровнями основного состояния атома цезия-133.

Такая точность нужна для определения положения космических кораблей, спутников, баллистических ракет, самолетов, подводных лодок, беспилотных автомобилей. Атомные часы используются в системах спутниковой и наземной телекоммуникаций, в базовых станциях мобильной связи, а также международными и национальными бюро стандартов и службами точного времени, которые периодически транслируют временные сигналы по радио.

В частности, международное время, рекомендованное для использования в гражданских целях — UTC, или всемирное координированное время — ежедневно рассчитывается Международным бюро мер и весов (BIPM) во Франции на основе сверки атомных часов по всей планете через спутниковую связь.

Однако у этого метода есть свои погрешности — современные оптические атомные часы, созданные на основе лазеров, взаимодействующих с ультрахолодными атомами, обеспечивают большую точность, чем спутниковая связь, которая их связывает.

Астрономы и эксперты по точному времени из Национального института информационных и коммуникационных технологий Японии (NICT), Национального института метрологии Италии (INRIM), Национального института астрофизики Италии (INAF) и бюро BIPM предложили в качестве источников опорных сигналов для сверки атомных часов использовать волны внегалактических радиоисточников.Для этого исследователи под руководством Мамуру Секидо (Mamoru Sekido) из NICT для реализации техники интерферометрии со сверхдлинной базой (VLBI) разработали два специальных радиотелескопа, один из которых был развернут в Японии, а другой в Италии. Эти телескопы могут вести наблюдения в широком диапазоне частот, а антенны диаметром всего 2,4 метра позволяют их перемещать.

“Мы хотим показать, что широкополосный VLBI может стать мощным инструментом не только в геодезии и астрономии, но и в метрологии”, — приводятся в пресс-релизе NICT слова Секидо.

Чтобы достичь требуемой чувствительности, во время тестовых испытаний, проводимых с 14 октября 2018 года по 14 февраля 2019 года, маленькие антенны работали в тандеме с более крупным 34-метровым радиотелескопом в Кашиме, Япония.

Целью было соединить оптические часы, расположенные на разных континентах, на расстоянии 8700 километров друг от друга, и работающие, к тому же, на разных атомных источниках. Часы в INRIM в Италии используют иттербий, а часы в NICT в Японии — стронций. Кстати, и те, и другие — кандидаты на будущее переопределение секунды в Международной системе единиц (СИ).

“Сегодня новое поколение оптических часов требует пересмотра определения секунды, — говорит Давиде Калонико (Davide Calonico), координатор исследований в INRIM. — Путь к переопределению столкнется с проблемой сравнения часов во всем мире, в межконтинентальном масштабе, с более высокими характеристиками, чем сегодня”.

В качестве источников сигнала ученые взяли квазары, находящиеся на расстоянии миллиардов световых лет. Эти радиоисточники, питаемые черными дырами с массой в миллионы солнечных масс, настолько удалены от нас, что их можно, по мнению ученых, считать фиксированными точками в небе.

Авторы полагают, что переносные антенны, подобные тем, что использовались в эксперименте, могут устанавливаться непосредственно в лабораториях, разрабатывающих оптические часы по всему миру, а также в национальных бюро точного времени.

“VLBI позволит нам в Азии получить доступ к всемирному координированному времени, полагаясь на собственные измерения”, — объясняет Тецуя Идо (Tetsuya Ido), директор Лаборатории космических стандартов и координатор исследований в NICT.

Помимо улучшения международного хронометража, такой подход, по мнению авторов, открывает новые возможности изучения вариаций гравитационного поля Земли и фундаментальных констант, лежащих в основе физики и общей теории относительности.

batkov

  • Супермодератор
  • Аксакал
  • *****
  • Спасибо
  • -> Вы поблагодарили: 28708
  • -> Вас поблагодарили: 46023
  • Сообщений: 15747
  • Респект: +4026/-0
Космос
« Ответ #1085 : 11 Октябрь 2020, 14:32:46 »
Звeздныe cкoплeния в NGC 1313
 22:08 10/10/2020
 


Ha кapтинкe пoкaзaнa внутpeнняя чacть гaлaктики paзмepoм oкoлo 10 тыcяч cвeтoвыx лeт. Уникaльнaя cпocoбнocть космического тeлecкoпa Xaбблa paзpeшить удaлeнную нa 14 млн cвeтoвыx лeт гaлaктику нa oтдeльныe звeзды иcпoльзoвaнa для тoгo, чтoбы paзгaдaть учacть звeздныx cкoплeний. Koгдa cкoплeния paзpушaютcя, яpкиe мoлoдыe звeзды pacceивaютcя пo диcку гaлaктики.

Иccлeдoвaния звeзд и cкoплeний в гaлaктикe NGC 1313 пoзвoляют лучшe пoнять пpoцeccы звeздooбpaзoвaния и эвoлюцию звeздныx cкoплeний в нaшeй Гaлaктикe Mлeчный Путь.

batkov

  • Супермодератор
  • Аксакал
  • *****
  • Спасибо
  • -> Вы поблагодарили: 28708
  • -> Вас поблагодарили: 46023
  • Сообщений: 15747
  • Респект: +4026/-0
Космос
« Ответ #1086 : 13 Октябрь 2020, 14:22:30 »
NGC 5643: близкaя cпиpaльнaя гaлaктикa oт тeлecкoпa им.Xaбблa
 18:19 12/10/2020
 


Чтo пpoиcxoдит в цeнтpe cпиpaльнoй гaлaктики NGC 5643?

NGC 5643 – этo вpaщaющийcя диcк из звeзд и гaзa, eгo внeшний вид oпpeдeляют гoлубыe cпиpaльныe pукaвa и кopичнeвaя пыль, чтo xopoшo виднo нa этoм изoбpaжeнии, пoлучeннoм кocмичecким тeлecкoпoм Xaббл. Ядpo aктивнoй гaлaктики являeтcя мoщным иcтoчникoм paдиoизлучeния и peнтгeнoвcкиx лучeй, в нeм oбнapужeнo двa джeтa.

Heoбычнoe излучeниe из цeнтpaльнoй чacти дeлaeт M106 oднoй из ближaйшиx ceйфepтoвcкиx гaлaктик. Пpeдпoлaгaeтcя, чтo oгpoмнoe кoличecтвo cвeтящeгocя гaзa пaдaeт нa цeнтpaльную мaccивную чepную дыpу. NGC 5643, cpaвнитeльнo близкa – oнa удaлeнa oт нac нa 55 миллиoнoв cвeтoвыx лeт, ee paзмep – oкoлo 100 тыcяч cвeтoвыx лeт, ee мoжнo увидeть c пoмoщью нeбoльшoгo тeлecкoпa в coзвeздии Boлкa.

batkov

  • Супермодератор
  • Аксакал
  • *****
  • Спасибо
  • -> Вы поблагодарили: 28708
  • -> Вас поблагодарили: 46023
  • Сообщений: 15747
  • Респект: +4026/-0
Космос
« Ответ #1087 : 14 Октябрь 2020, 16:54:44 »
Моделирование изменения температуры на далеких звездах
 6:09 14/10/2020
 


Новые исследования помогают ответить на один из больших вопросов, который озадачивает астрофизиков в течение последних 30 лет – что вызывает изменение яркости далеких звезд, называемых магнетарами.

Спойлер   :
Магнетары были сформированы из звездных взрывов или сверхновых, и они имеют чрезвычайно сильные магнитные поля, примерно, в миллион раз больше, чем магнитное поле Земли.

Магнитное поле на каждом магнетаре генерирует интенсивное тепло и рентгеновские лучи. Магнетар настолько силен, что влияет на физические свойства материи, особенно на то, как тепло проходит через кору звезды и через ее поверхность, создавая вариации яркости, которые озадачили астрофизиков и астрономов.

Группа ученых, возглавляемая доктором Андреем Игошевым из Лидского университета, разработала математическую модель, которая имитирует то, как магнитное поле нарушает общепринятое представление о равномерном распределении тепла, что приводит к более горячим и холодным областям, где может быть разница в температуре в миллион градусов Цельсия.

Эти более горячие и более холодные области испускают рентгеновские лучи различной интенсивности – и именно это изменение интенсивности рентгеновского излучения наблюдается как изменение яркости космическими телескопами.

Результаты исследования – “сильные тороидальные магнитные поля, необходимые для спокойного рентгеновского излучения магнетаров” – были опубликованы сегодня в журнале Nature Astronomy. Исследование финансировалось Советом по научно-техническим объектам (STFC).

Доктор Игошев из Школы математики в Лидсе сказал: “Мы видим эту постоянную картину горячих и холодных областей. Наша модель – основанная на физике магнитных полей и физике тепла – предсказывает размер, местоположение и температуру этих областей – и при этом помогает объяснить данные, полученные с помощью спутниковых телескопов в течение нескольких десятилетий, и которые заставили астрономов ломать головы над тем, почему яркость магнетаров, казалось, менялась. Наши исследования включали формулировку математических уравнений, описывающих, как работает физика магнитных полей и распределение тепла. Формулировка этих уравнений требовала времени. Большой проблемой было написание компьютерного кода для решения уравнений – это заняло более трех лет”.

После того как код был написан, потребовался суперкомпьютер для решения уравнений, что позволило ученым разработать свою прогностическую модель.

Команда использовала финансируемые STFC суперкомпьютерные установки DiRAC в Лестерском университете.

Доктор Игошев сказал, что после того, как модель была разработана, ее предсказания были проверены на основе данных, собранных космическими обсерваториями. Модель оказалась правильной в десяти случаях из 19.

Магнетары, изученные в рамках исследования, находятся в Млечном Пути и обычно находятся на расстоянии 15 тысяч световых лет.

batkov

  • Супермодератор
  • Аксакал
  • *****
  • Спасибо
  • -> Вы поблагодарили: 28708
  • -> Вас поблагодарили: 46023
  • Сообщений: 15747
  • Респект: +4026/-0
Космос
« Ответ #1088 : 16 Октябрь 2020, 13:35:25 »
Бетельгейзе оказалась ближе к Земле и меньше по размерам, чем считали ученые
 12:47 16/10/2020
 


 

Астрофизики измерили точное расстояние до Бетельгейзе и скорость вращения этой звезды. Оказалось, что ее диаметр на треть меньше, чем предполагали ученые, а сама звезда находится на 25% ближе к Земле. Статью с описанием исследования опубликовал Astrophysical Journal.

Спойлер   :
“Размеры Бетельгейзе всегда были загадкой. Согласно прежним оценкам ее радиус примерно равен расстоянию между Солнцем и Юпитером. Мы выяснили, что он примерно на треть меньше – 750 радиусов Солнца. То есть Бетельгейзе находится всего в 530 световых годах от нас”, – рассказал один из авторов статьи, астрофизик из Обсерватории Конкоя (Венгрия) Ласло Молнар.

Бетельгейзе – одна из самых больших и ярких звезд на небе. Она находится в созвездии Ориона. Бетельгейзе можно увидеть невооруженным глазом благодаря тому, что она находится на небольшом расстоянии до Земли, а также ее огромным размерам и массе. Ученые считают, что она тяжелее Солнца в 15-25 раз. До открытия Молнара и его коллег астрономы предполагали, что если бы Бетельгейзе находилась в центре Солнечной системы, ее внешние слои достигали бы примерно тех же областей, где находится орбита Юпитера.

Бетельгейзе находится на последнем этапе звездной эволюции – стадии красного сверхгиганта. Так ученые называют “престарелые” звезды, запасы водорода у которых почти закончились. На этой стадии звезды резко расширяются и начинают сбрасывать вещество внешних оболочек в открытый космос. В результате образуются огромные облака пыли и формируются яркие газопылевые туманности.

В частности, в конце прошлого года яркость Бетельгейзе начала стремительно падать, к январю этого года уменьшившись на 63%. В середине весны светимость звезды вернулась к прежним показателям. Точные причины этого потускнения пока неизвестны. Ученые предполагают, что оно было связано с выбросом мощного облака пыли. Позже Бетельгейзе пережило еще один похожий эпизод, о причинах которого астрономы продолжают спорить.

Новый размер

Молнар и его коллеги попытались выяснить эти причины, наблюдая за Бетельгейзе с помощью коронографа SMEI, который установлен на борту американского спутника “Кориолис”. С помощью этого прибора астрономы изучают излучение, которое вырабатывают или отражают объекты вокруг Бетельгейзе, в том числе потенциальные облака из пыли.

Данные SMEI показывают, что второе потускнение Бетельгейзе вызвало не облако пыли, а процессы в недрах светила. Они связаны с тем, как в его ядре проходят термоядерные реакции. Это не означает, что Бетельгейзе скоро превратится в сверхновую, подчеркивают ученые. По их оценкам, это произойдет лишь через 10-100 тыс. лет.

Эти же данные можно использовать для того, чтобы вычислить точные размеры звезды, опираясь на скорость ее вращения, периодические колебания в яркости и некоторые другие параметры. Проведя подобные расчеты, ученые выяснили, что ранее размеры и расстояние до Бетельгейзе были сильно завышены.

В частности, радиус Бетельгейзе исследователи оценили примерно в 3,5 астрономических единицы. Так ученые называют среднее расстояние между Солнцем и Землей. В масштабах Солнечной системы это эквивалентно тому, что граница этой звезды проходила бы не по орбите Юпитера, а через главный пояс астероидов, который находится между Марсом и Юпитером.

Кроме того, эти оценки говорят о том, что Бетельгейзе изначально не могла быть тяжелее Солнца более чем в 19 раз. Это тоже меньше предыдущих максимальных оценок.

По словам исследователей, новые оценки расстояния между Землей и Бетельгейзе не означает, что взрыв сверхновой будет представлять угрозу для жизни на нашей планете. Ученые надеются, что это поможет их будущим коллегам максимально детально изучить одно из самых высокоэнергетических событий во Вселенной с близкого, но безопасного расстояния.

batkov

  • Супермодератор
  • Аксакал
  • *****
  • Спасибо
  • -> Вы поблагодарили: 28708
  • -> Вас поблагодарили: 46023
  • Сообщений: 15747
  • Респект: +4026/-0
Космос
« Ответ #1089 : 17 Октябрь 2020, 16:25:58 »
Телескоп Джеймса Уэбба покажет скрытые галактики
 5:50 17/10/2020
 


Два новых исследования из Мельбурнского университета помогут самому большому, мощному и сложному космическому телескопу, когда-либо построенному, обнаружить галактики, никогда ранее не виденные человечеством.

Спойлер   :
Эти статьи публикуются в журнале Astrophysical Journal и ежемесячных уведомлениях Королевского астрономического общества и показывают, что космический телескоп НАСА имени Джеймса Уэбба, запуск которого запланирован на конец следующего года, обнаружит скрытые галактики.

Мощные огни, называемые квазарами, являются самыми яркими объектами во Вселенной. Питаемые сверхмассивными черными дырами, масса которых в триллион раз превышает массу нашего Солнца, они затмевают целые галактики из миллиардов звезд. Моделирование, проведенное доктором наук Мэдлин Маршалл, показывает, что, хотя даже космический телескоп Хаббла НАСА не может видеть галактики, в настоящее время скрытые этими квазарами, телескоп Джеймса Уэбба сможет сделать это.

“Телескоп Джеймса Уэбба откроет возможность впервые наблюдать эти очень далекие галактики”, – сказала Маршалл, которая проводила свои исследования в центре передового опыта ARC по всей небесной астрофизике в 3 измерениях (ASTRO 3-D).

-Это поможет нам ответить на такие вопросы, как: как черные дыры могут расти так быстро? Существует ли связь между массой галактики и массой черной дыры, как мы видим в соседней вселенной?”

Хотя известно, что квазары находятся в центрах галактик, было трудно сказать, на что похожи эти галактики и как они отличаются от галактик без квазаров.

“В конечном счете, наблюдения Уэбба должны дать новое понимание этих экстремальных систем”, – сказал соавтор ASTRO 3-D Стюарт Уайтх из Мельбурнского университета. – Собранные им данные помогут нам понять, как черная дыра может весить в миллиард раз больше нашего Солнца всего за миллиард лет существования. Эти большие черные дыры должны были образоваться не так рано, ибо за такое маленькое количество времени они стали невероятно массивными”.

Команда Мельбурнского университета совместно с исследователями из США, Китая, Германии и Нидерландов использовала космический телескоп Хаббла для наблюдений за этими галактиками. Затем они использовали современное компьютерное моделирование под названием BlueTides, которое было разработано командой под руководством выдающегося гостя ASTRO 3-D Тицианы Ди Маттео из Университета Карнеги-Меллона в Питтсбурге, штат Пенсильвания, США.

“BlueTides предназначено для изучения формирования и эволюции галактик и квазаров в течение первого миллиарда лет истории Вселенной”, – сказал Юйин Ни из Университета Карнеги-Меллона, который провел моделирование BlueTides. “Его большой космический объем, и высокое пространственное разрешение позволяют нам изучать эти редкие квазарные хозяева на статистической основе”.

Команда использовала эти симуляции, чтобы определить, что увидят камеры телескопа Уэбба, если обсерватория изучит эти отдаленные системы. Они обнаружили, что отличить галактику-носитель от квазара будет возможно, хотя все еще сложно из-за небольшого размера галактики на небе.

Они также обнаружили, что галактики, в которых находятся квазары, как правило, меньше среднего, занимая лишь около 1/30 диаметра Млечного Пути, несмотря на то, что содержат почти столько же массы, сколько наша галактика.

“Галактики-хозяева удивительно малы по сравнению со средней галактикой в тот момент времени”, – сказала Маршалл.

batkov

  • Супермодератор
  • Аксакал
  • *****
  • Спасибо
  • -> Вы поблагодарили: 28708
  • -> Вас поблагодарили: 46023
  • Сообщений: 15747
  • Респект: +4026/-0
Космос
« Ответ #1090 : 18 Октябрь 2020, 16:35:47 »
Анемичное звездное скопление побило рекорд по бедности металлов
 20:27 17/10/2020
 


Удивительно, но астрономы с помощью двух обсерваторий Маунакеи – обсерватории Кека и телескопа Канада-Франция-Гавайи (CFHT) – обнаружили в Галактике Андромеда шаровое звездное скопление, содержащее рекордно низкое количество металлов.

Звезды в скоплении, названном RBC EXT8, в среднем содержат в 800 раз меньше железа, чем наше Солнце, и в три раза беднее железом, чем предыдущий лидер среди шаровых скоплений. RBC EXT8 также крайне не хватает магния.

Спойлер   :
Исследование, проведенное Сёреном Ларсеном из Университета Радбауд в Нидерландах, опубликовано в сегодняшнем выпуске журнала Science.

«Я поражен тем, что это замечательное звездное скопление просто сидело у нас под носом. Это одно из самых ярких скоплений в галактике Андромеда, известное на протяжении десятилетий, но никто не изучал его подробно», – сказал Аарон Романовски, астроном из обсерваторий Калифорнийского университета (UCO) и профессор физики и астрономии Государственного университета Сан-Хосе.

«Это показывает, что Вселенная все еще преподносит нам много сюрпризов. Это также напоминает нам о необходимости проверить наши предположения – в этом случае предполагалось, что было исследовано достаточно кластеров, чтобы понять, насколько они могут быть анемичными».

Шаровое скопление – это большое плотное скопление от тысяч до миллионов древних звезд, которые движутся вместе как сплоченная группа по галактике. До сих пор астрономы думали, что большие шаровые скопления должны содержать значительное количество тяжелых элементов.

Водород и гелий – два основных элемента, образовавшихся после Большого взрыва. Позднее образовались более тяжелые элементы, такие как железо и магний. Обнаружение массивного шарового скопления, такого как RBC EXT8, которое чрезвычайно бедно металлами, бросает вызов современным моделям образования, ставя под сомнение некоторые из наших представлений о рождении звезд и галактик в молодой Вселенной.

«Наше открытие показывает, что в ранней Вселенной из газа могли образоваться массивные шаровые скопления при небольшом «разбросе» других элементов, кроме водорода и гелия. Это удивительно, поскольку считалось, что такой чистый газ находится в строительных блоках, слишком маленьких для образования таких массивных звездных скоплений», – сказал Ларсен.

«Это открытие является захватывающим, потому что идея «порога металличности» для шаровых скоплений, которые должны содержать некоторое минимальное количество тяжелых металлов, лежала в основе многих наших размышлений о том, как эти очень старые звездные скопления образовывались в ранней Вселенной», – сказал соавтор Жан Броди, директор Центра астрофизики и суперкомпьютеров Университета Суинберна и почетный профессор астрономии и астрофизики UCO. «Наша находка противоречит стандартной картине, и это всегда весело!»

Исследователи наблюдали RBC EXT8 с помощью спектрометра высокого разрешения (HIRES) обсерватории Кека в октябре 2019 года. Первоначально шаровое скопление не входило в программу, но у команды Ларсена оставалось несколько часов времени для наблюдений и они решили нацелить телескоп Keck I на скопление, звездный состав которого еще не изучен подробно. Команда провела спектроскопические наблюдения, чтобы определить содержание металлов в RBC EXT8, и использовала три архивных изображения с CFHT, чтобы определить его размер и оценить его массу. Их замечательный результат стал неожиданностью.

«С точки зрения наблюдений сложно получить подробный анализ химического состава шаровых скоплений в галактике Андромеда, которая находится в северном полушарии неба», – сказал Броди. «Возможности HIRES в Keck уникально подходят для решения этой задачи».

В будущем исследователи надеются найти больше «металлических» шаровых скоплений и разгадать тайну их происхождения.

batkov

  • Супермодератор
  • Аксакал
  • *****
  • Спасибо
  • -> Вы поблагодарили: 28708
  • -> Вас поблагодарили: 46023
  • Сообщений: 15747
  • Респект: +4026/-0
Космос
« Ответ #1091 : 19 Октябрь 2020, 13:56:08 »
Метеорный поток Ориониды
 5:00 19/10/2020
 


В начале следующей недели достигнет максимума активности метеорный поток Ориониды. Он порожден кометой Галлея, период обращения которой равен около 76 лет. В этом году Международная метеорная организация прогнозирует, что пик активности придется на ночь 20/21 октября при ожидаемом зенитном часовом числе (ZHR) метеоров 20 и более. Активность Орионид часто остается примерно на одном уровне несколько последующих ночей. Молодая Луна в фазе 0,20 не помешает ночным наблюдениям, так как зайдет за горизонт вскоре после заката.

Спойлер   :
Радиант потока находится на границе созвездий Орион и Близнецы. Он поднимается выше всего над горизонтом после местной полуночи. Ориониды — это быстрые метеоры, их скорость составляет 66 км/сек. Для сравнения: скорость Персеид 59 км/сек.

ZHR (зенитное часовое число) — это расчётная величина, характеризующая активность метеорного потока и показывающая, сколько метеоров в час смог бы увидеть наблюдатель, при идеальных условиях наблюдения (то есть при предельной звёздной величине +6,5m) и если радиант потока находился бы в зените. Максимальное зенитное часовое число высокоактивных потоков выше 20.

batkov

  • Супермодератор
  • Аксакал
  • *****
  • Спасибо
  • -> Вы поблагодарили: 28708
  • -> Вас поблагодарили: 46023
  • Сообщений: 15747
  • Респект: +4026/-0
Космос
« Ответ #1092 : 20 Октябрь 2020, 13:33:31 »
M85 имеет своеобразную шаровую кластерную систему
 18:52 19/10/2020
 


Астрономы провели исследование звездной популяции и кинематики шаровых скоплений (ГКС) в галактике M 85 и обнаружили, что в этой галактике находится своеобразная система шаровых скоплений. Об этом открытии сообщается в статье, опубликованной 6 октября в репозитории предварительной печати arXiv.

Спойлер   :
Расположенный примерно в 60 миллионах световых лет от Земли, М85 (также известная как NGC 4382) имеет сложную внешнюю структуру с оболочками и рябью, как полагают, в результате слияния с другой галактикой. Считается, что это слияние произошло между 4 и 7 миллиардами лет назад.

Однако из-за наблюдаемых признаков остатка слияния многие свойства М85 все еще остаются неопределенными, как и его морфологический тип. Чтобы лучше понять М85, было проведено много исследований его центральной области, но мало кто исследовал его окраины.

Поэтому группа астрономов во главе с Юкюнг Ко из Корейского Института астрономии и космических наук в Тэджоне, Южная Корея, использовала GCs для исследования гало галактики. Они использовали обсерваторию MMT в Аризоне для проведения широкопольной спектроскопической съемки ГКС с целью изучения физических свойств этих кластеров в окрестностях М85.

“Мы представляем спектроскопическое исследование GC в галактике слияния остатков M85 с использованием MMT/Hectospec”, – писали астрономы в статье.

Было измерено, что системная скорость M85 составляет около 696 км/с, в то время как средние радиальные скорости галактик BGC, GGC и RGC оказались выше, на уровне 727, 812 и 704 соответственно. RGC имеет самую высокую среднюю металличность из трех групп, оцениваемую приблизительно в -0,45. Остальные два, BGC и GGC, имеют средние значения металличности около -1,49 и -0,91 соответственно.

Астрономы пришли к выводу, что различия в кинематике трех групп GC свидетельствуют о том, что они формировались и эволюционировали по-разному. Было отмечено, что BGC в M85 обладают кинематическими свойствами и металличностью, аналогичными таковым в других раннемассивных галактиках. Однако они отмечают, что две другие шаровые кластерные группы имеют своеобразную кинематику, которая не может быть объяснена типичными сценариями формирования GC.

“GGC может быть популяцией, прирастающей к плоскости M85 или отдаляющей от нее, а RGC может быть остатком, произведенным недавними крупными событиями слияния вне центра”, – объяснили авторы статьи.

Они добавили, что необходимы дальнейшие исследования кинематики и пространственного распределения, чтобы лучше понять происхождение GGC и RGC в M85.

batkov

  • Супермодератор
  • Аксакал
  • *****
  • Спасибо
  • -> Вы поблагодарили: 28708
  • -> Вас поблагодарили: 46023
  • Сообщений: 15747
  • Респект: +4026/-0
Космос
« Ответ #1093 : 21 Октябрь 2020, 18:44:27 »
Обнаружены доказательства столкновения Млечного Пути с другой галактикой
 19:45 20/10/2020
 


Астрофизики из США и Канады обнаружили доказательства того, что три миллиарда лет назад в Млечный Путь врезалась карликовая галактика. Следы этого бокового столкновения сохраняются до сих пор. Результаты исследования опубликованы в журнале The Astrophysical Journal.

Спойлер   :
Около двух десятилетий назад астрономы обнаружили в районе созвездия Девы аномально высокую плотность звезд нашей Галактики, названную Сверхплотностью Девы. Необычным оказалось то, что некоторые из этих звезд двигаются по направлению к нам, а другие удаляются, хотя обычно звезды внутри скоплений перемещаются согласованно.

В 2019 году американские астрофизики из Политехнического института Ренсселера предположили, что плотное скопление звезд в созвездии Девы возникло при радиальном слиянии, или, говоря обычным языком, боковом столкновении Млечного Пути с другой, более мелкой галактикой. Последняя, по мнению ученых, была разорвана гравитационными силами столкновения.

В новом исследовании авторы вместе с коллегами из Университета Пенсильвании и Королевского университета в Онтарио доказывают, что карликовая галактика погрузилась в центр Млечного Пути, а в результате слияния в окрестностях созвездия Девы образовалась серия звездных “оболочечных структур”. Такая версия, по мнению ученых, объясняет кажущийся парадокс несогласованного движения звезд.

“Когда мы собрали все факты вместе, наступил момент эврики, — приводятся в пресс-релизе института слова руководителя исследования, профессора физики и астрономии Хайди Джо Ньюберга (Heidi Jo Newberg). — Теперь, когда мы видим движение всех звезд в целом, мы понимаем, почему их скорости разные и почему они движутся таким образом”.

По словам авторов, выявленные ими оболочечные структуры — это изогнутые как зонтики плоскости движения звезд, разлетающихся из того места, где карликовая галактика была разорвана на части.

Моделирование показало, что при радиальном столкновении карликовая галактика сначала проходит через центр Млечного Пути, а потом замедляется по мере того, как на нее действует гравитация. Остановившись в самой дальней точке, галактика разворачивается и снова врезается в центр, создавая новую оболочку. И так происходит несколько раз.

Оценив количество таких циклов, авторы рассчитали, что впервые карликовая галактика прошла через центр Млечного Пути 2,7 миллиарда лет назад.

Ньюберг, много лет изучающий гало нашей Галактики — сферическое звездное облако, окружающее спиральные рукава центрального диска — считает, что большинство его звезд — “иммигранты”, образовавшиеся в меньших галактиках, которые позже были втянуты в Млечный Путь.

По мере того как меньшие галактики сливаются с Млечным Путем, их звезды притягиваются так называемыми приливными силами и в конечном итоге образуют длинные шнуры из звезд, движущихся в унисон внутри гало. Более жесткие радиальные столкновения, по мнению авторов, менее распространены. После столкновения с ними в нашей Галактике формируются оболочечные структуры, которые раньше ученые не фиксировали.

“Мы знали, что такие вещи случаются, но смотрели на Млечный Путь и не видели очевидных гигантских оболочек, — говорит первый автор статьи Томас Донлон II (Thomas Donlon II). — А потом мы поняли, что это тот же тип слияния, который мы видели в других галактиках, просто это выглядит по-другому, потому что, во-первых, мы внутри Млечного Пути, поэтому у нас другая точка зрения, а также потому, что у нас не так много примеров оболочечных структур в дисковых галактиках”.

Авторы надеются, что их открытие позволит лучше представить историю эволюцию Млечного Пути и других галактик.

batkov

  • Супермодератор
  • Аксакал
  • *****
  • Спасибо
  • -> Вы поблагодарили: 28708
  • -> Вас поблагодарили: 46023
  • Сообщений: 15747
  • Респект: +4026/-0
Космос
« Ответ #1094 : 23 Октябрь 2020, 19:17:25 »
Тайна необычной нейтронной звезды раскрыта через 20 лет после ее обнаружения
 15:16 23/10/2020
 


По прошествии более чем двух десятилетий международная исследовательская группа наконец идентифицировала таинственный галактический источник гамма-лучей – систему, состоящую из массивной нейтронной звезды и обращающегося вокруг нее компаньона небольшой массы.

Спойлер   :
Применяя новые методы компьютерного анализа данных, для реализации которых было использовано 10 000 видеокарт, установленных на персональных компьютерах участников любительского астрономического проекта Einstein@Home, команда идентифицировала эту нейтронную звезду по регулярным пульсациям в гамма-диапазоне.

Этот источник был впервые открыт еще в 1999 г., однако уже начиная с 2009 г. ученые стали предполагать наличие нейтронной звезды в данной системе. В 2014 г. были проведены наблюдения системы в оптическом и рентгеновском диапазонах, и они дополнительно косвенно подтвердили предположение о нейтронной звезде, однако доказать ее существование до настоящего времени не удавалось.

В новой работе команда под руководством Ларса Нидера (Lars Nieder) из Института им. Альберта Эйнштейна в Ганновере, Германия, при помощи компьютеров тысяч астрономов-любителей провела подробный анализ данных наблюдений неба в гамма-диапазоне, выполненных при помощи космической гамма-обсерватории Fermi («Ферми») НАСА. Этот анализ позволил выявить периодический сигнал, указывающий на то, что наблюдаемый источник является гамма-пульсаром. Этот пульсар, получивший название PSR J1653-0158, состоит из стремительно вращающейся со скоростью свыше 30 000 оборотов в минуту нейтронной звезды, масса которой составляет около 2 масс Солнца, и крохотной звезды-компаньона массой всего лишь примерно в 1 процент от массы нашего светила, обнаружили Нидер и его коллеги.

К удивлению исследователей, анализ также показал, что эта нейтронная звезда почти не излучает в радиодиапазоне. Это может объясняться либо тем, что радиоволны, излучаемые пульсаром, направлены не в сторону Земли, либо тем, что система окутана облаком плазмы, не пропускающим радиоволны, пояснили авторы.